Pericyclic Reactions

Understanding the Dynamics of Organic Chemistry Reactions

Course name: Heterocyclic, organic synthesis and pericyclic reactions

Course code: BCHE603

prepared by: Dr. Ajay Kumar
(Assistant Professor)
Department of Chemistry,
SBAS, MAU

Introduction

This presentation explores pericyclic reactions, their types, mechanisms, and significance in organic chemistry, focusing on how these reactions occur through concerted processes involving cyclic transition states.

01 Types

Electrocyclic reactions

Electrocyclic reactions involve the opening or closing of a cyclic system through the rotation of σbonds and π-bonds, governed by orbital symmetry. Catalysts can influence the direction of the reaction, which may occur thermally or photochemically.

Cycloaddition reactions

Cycloaddition reactions combine two reactants to form a cyclic product in a single step, often involving π -systems. The most common examples include Diels-Alder reactions, which showcase the importance of stereochemistry and transition states in reaction pathways.

Sigmatropic rearrangements

Sigmatropic rearrangements are reactions where a σ -bond and π -bond shift simultaneously to form a new bond while breaking another. These rearrangements can be classified into various categories based on the number of atoms involved and the nature of the migration, playing a crucial role in synthesis and natural product development.

02 Mechanisms

Orbital symmetry consideration

In pericyclic reactions, orbital symmetry plays a vital role in determining reactivity. The Woodward-Hoffmann rules provide a framework for predicting the stereochemical outcomes of these reactions based on the symmetry of the molecular orbitals involved, making it easier to understand the electron flow during reactions.

Reaction intermediates

Reaction intermediates are transient species formed during the progression of a chemical reaction. In pericyclic reactions, identifying these intermediates helps chemists understand reaction pathways, barriers, and the influence of external conditions on reaction outcomes, essential for effective synthesis planning.